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Abstract

A general framework for comparing objects commonly used to represent nonlinear ge-

ometry with simpler, related objects, most notably their control polygon, is provided. The

framework enables the e�cient computation of bounds on the distance between the nonlinear

geometry and the simpler objects and the computation of envelopes of nonlinear geometry.

The framework is used to compute envelopes for univariate splines, the four point subdi-

vision scheme, tensor product polynomials and bivariate Bernstein polynomials.

The envelopes are used to approximate solutions to continuously constrained optimization

problems.
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CHAPTER 1

Introduction

In computer graphics and computer aided geometric design, geometry is routinely para-

metrized by nonlinear elements such as Bernstein polynomials or B{splines. In choosing

between a piecewise linear and a nonlinear representation of geometry, there is a trade{o�.

On one hand, nonlinear representations allow the construction of smooth surfaces, the higher

approximation order of nonlinear representations can be used to represent geometry more

compactly, and their explicit parametrization is important for applications such as texture{

mapping. On the other hand, nonlinear elements require more sophisticated treatment: they

have to be linearized for forward problems such as rendering, analysis problems such as curve

intersections require the solution of nonlinear equations, and inverse problems such as �tting

a smooth spline inside a polygonal channel need either be reformulated as linear problems

or be solved by some nonlinear method.

For many applications it is enough to linearize the geometry by some method that guar-

antees convergence of the linearization to the nonlinear geometry. For example, B-splines

are usually rendered by rendering a suitably subdivided control polygon. The subdivision

needs to avoid both a linearization that is too coarse, leading to visual artifacts, or too �ne,

leading to unnecessary computational e�ort. A measure of the accuracy of the linearization

is therefore needed, and its computation should be a small fraction of the cost of computing

the linearization itself.

In other applications, it is imperative to have a bound on the error between linearized and

nonlinear geometry. A prime example is ray{tracing: while in theory ray{surface intersection

tests can be performed purely on the nonlinear geometry, for example by Newton's method,

this is too ine�cient in practice and often unstable. Usually, the nonlinear geometry is ap-

proximated by a hierarchy of linear envelopes and ray{surface intersections are performed

on the linear envelopes to minimize the number of expensive nonlinear intersection compu-

tations. The linear envelopes are constructed from a linear approximation of the surface and

a bound on the error between surface and linear approximation.

In fact, most analysis and inverse problems can be solved approximately by the application

of linear envelopes: �nding the zeros of a polynomial in Bernstein{B�ezier form or testing a

B{spline curve for self{intersection are solved more easily and e�ciently by repeated adaptive

re�nement of linear envelopes than by employing nonlinear algorithms [ 15].

1.1. The thesis

It is possible to construct envelopes, in particular piecewise linear ones, for the commonly

used repesentations of nonlinear geometry both e�ectively and e�ciently. The construction

1



2 1. INTRODUCTION

requires neither that the representation ful�ll a convex{hull property nor that the represen-

tation is of a given smoothness.

The construction can exploit the re�nability of a given representation through the subdivide{

and{bound procedure explained in Section 3.7.1, even for representations that only have a

procedural evaluation algorithm or that lack the convex hull property.

The construction is e�cient since the costly steps in computing envelopes are moved to

a preprocessing phase that only depends on the representation used, but not on individual

functions. The computation of envelopes for individual functions requires only the lookup

of precomputed values and a few scalar products.

1.2. Prior work

Prior bounds in the literature can be divided into qualitative bounds and quantitative

bounds. In general, qualitative bounds are too large or too impractical to compute to be

used for the construction of envelopes.

1.2.1. Qualitative bounds. Qualitative bounds arise typically in the proof of conver-

gence properties of nonlinear representations, for example in the proof of the convergence of

the B-spline control polygon to a spline curve under repeated knot insertion. The bounds

that can be derived from these proofs either contain unknown constants or are too large for

practical purposes.

DeBoor [6] proves that the B{spline control polygon a of a spline b converges quadrati-

cally to the spline under subdivision (knot insertion) by showing that

sup
t
|b(t) − a(t)| ≤ C |t|2 sup

t
|b ′′(t)| ,(1.2.1)

where |t| is the maximal distance between two consecutive knots in the knot sequence t. The

constant C is not known explicitly.

Prautzsch and Kobbelt [23] and Dahmen [3] give two di�erent proofs of the quadratic

convergence of the control polygon of a B�ezier{curve to the curve under subdivision. The

estimates on the distance between control polygon and curve implied by these proofs are

larger than a simple min{max bound.

1.2.2. Quantitative bounds. Dozens of quantitative bounds have been developed for

the more common geometry representations. Some of them, for example [ 17] and [12], require

sophisticated preprocessing steps such as �nding all points with horizontal or vertical tangents

on a curve. A good survey of bounds for curve and surface intersections can be found in [ 15].

Bounds that are easy to implement and yield rectangular envelopes are often based on

the min{max criterion, which is a consequence of the convex{hull property. For example,

for a polynomial b in Bernstein{B�ezier form with control points bi, the min{max criterion

states that the minimal (maximal) value of b lies between the minimal (maximal) control

point, and that therefore

min
i
bi ≤ b(t) ≤ max

i
bi t ∈ [0, 1],(1.2.2)
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which is often used because it is so simple to compute. The simplicity comes at the price of

large min{max envelopes: they are in general larger than the convex hull.

For bases B that have the convex hull property, the convex hull of the control polygon

b can be used to enclose a curve or surface. Convex hulls have two shortcomings: the

computation of the convex hull is expensive, particularly in more than three dimensions,

and, for adaptive subdivision, a stopping criterion based on the convex hull is equivalent

to testing the 
atness of the control polygon: for a convex or concave control polygon, the

convex hull consists of the control polygon and a line connecting the �rst and last control

point. The size of the convex hull is directly related to the 
atness of the control polygon.

But under repeated subdivision, almost all control polygons encountered will be convex or

concave, since a polynomial or rational curve has only a �nite number of in
ection points.

Nevertheless, the convex hull is arguably the most popular bounding criterion for bases B

that possess the convex hull property. For bases that do not possess this property, Goldman

and DeRose [14] show how a similar bound can be computed by in
ating the convex hull

of the control points by a factor that depends on the minimal (negative) values of the basis

functions.

In [13], bounds on the distances between curves and surfaces and secants (lines con-

necting two points on a curve or triangles connecting three points on a surface) are derived

from Taylor{expansions. Bounding boxes are then constructed by enlarging the bounding

boxes of the secants by the bounds. The bounding boxes can only be re�ned by computing

more points on the surface, which reduces the advantages that the geometric meaning of the

coe�cients of the Bernstein{B�ezier representation o�er.

Kobbelt [16] uses a secant based approach to construct envelopes for subdivision curves

or surfaces. This paper is remarkable in that it contains the �rst e�ort to envelope general

subdivision surfaces for which no closed{form basis is known. Since he �nds that axis{aligned

bounding boxes constructed with his method are too large, he uses oriented bounding boxes ,

boxes that are parallel to the control polygon pieces. His bound is piecewise constant and

uses a min{max criterion similar to (1.2.2). The construction is based on secants. The

computation of envelopes requires therefore the evaluation of points on the curve or surface

and its cost is dominated by the cost of the evaluation.

Farin [10] shows that for rational B�ezier{curves, the convex hull property can be tightened

to the convex hull of the �rst and the last control point and the weight points, which are

points on the legs of the control polygon associated with the weights of the rational B�ezier

representation.

Sederberg [27] encloses a curve p between two concentric circular arcs by estimating the

maximum and minimum distance d of the points p(t) from a circle through a point x,

d2(t) = (p(t) − x)2.

The point x is chosen as the midpoint of the circle through p(0), p(1/2) and p(1).
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In extension of the results in [19], Reif [25] describes a method for deriving bounds of

the form

‖b− Lb‖p ≤ ‖b∗ − Lb∗‖p‖∆2b‖∞
on the Lp norm ‖·‖p of the di�erence between a spline b and its control polygon Lb. The

spline b∗ only depends on the basis B, so that ‖b∗ − Lb∗‖p can be precomputed. This

approach is applied to uni{ and bivariate Bernstein{polynomials, splines and tensor products

of Bernstein polynomials and splines. The resulting bounds are closely related to the H�older

bounds introduced in Theorem 3 on page 10. Most remarkably, he shows that for splines of

degree d the di�erence between a spline b and its control polygon Lb is bounded as

‖b− Lb‖∞ ≤ supj σ
2
j

2d
‖∆2b‖∞,

where σ2j is the variance of d consecutive knots. He uses this bound to derive an alternative

proof of (1.2.1) with an explicit constant C.

1.3. Notational conventions

We use script letters B, H, etc. to denote linear spaces. Capital roman letters denote

sets of basis functions B, H, etc., with individual basis functions denoted as Bi or Hi. We

also use capital roman letters to denote linear operators D, K, etc.

We use the same symbols for a linear operator K, the set of functions Kk de�ned by

applying it to a basis and the i-th coe�cient Kk,i of the k-th function Kk with respect to a

�xed basis.

For functions b ∈ B, we use b(t) to denote the value of b at t and bi to denote the i-th

coe�cient of b with respect to a �xed basis B of B. We write b and b for functions that

enclose b by b ≤ b ≤ b.
For boolean expressions P, we de�ne [P] to be

[P] =

{
1 if P is true,

0 if P is false.

This gives a compact notation not only for [i = j], which could also be written with the usual

Kronecker δ, but also for more general expressions such as [i > j].



CHAPTER 2

Bounds on nonlinear geometry

Quantitative bounds on nonlinearly parametrized geometry are based on bounds on

nonlinear functions. This chapter will lay the groundwork for deriving bounds on nonlinear

functions on which Chapters 3 and 4 build.

Bounds are computed by bounding the di�erence between a nonlinear function b and a

simpler, often piecewise linear, function h. This in turn yields an envelope of b which is

guaranteed to enclose it. The simpli�cations h are usually intimately linked to the nonlinear

representation, such as the B-spline control polygon of a spline. The approach in this chapter

does not pose any restrictions on what the simpler objects are, although most of the envelopes

computed and used in the following chapters are control polygons, simply because they are

the description of b that is used for computations anyway.

Computing envelopes based on our approach in practice consists of two steps: estimating

the range of a small number of basis functions and forming linear combinations of the esti-

mates. Only the second step, which is very simple to implement, depends on an individual

b, while the �rst only depends on the basis in which we represent the b and a basis for the

simpler functions h. This feature is very important in practice: usually, the basis in which

the b are represented, for example uniform cubic splines, stays �xed, while the coe�cients

of b are modi�ed. Splitting the computation into these two steps provides envelopes that

require a precomputation that can be costly. But even a high precomputation cost is justi�ed

since it need only be carried out once for any basis. The precomputation yields values that

are tabulated once and for all. The computation of envelopes for speci�c functions b is then

very e�cient.

2.1. Nonlinear geometry

We are interested in bounding the di�erence between a geometric object and a second,

simpler object. We assume that the geometric objects are elements of a vector space B for

which the functions Bi form a basis and that the simpler objects are elements of a second

vector space H with basis Hi. Both B and H might be �nite- or in�nitedimensional. We

assume that B and H are contained in a bigger vector space U = B+H and call the subspace

common to B and H, a subspace of U , W = B ∩H.

Example. We will use the polynomials b of degree at most d over the interval [0, 1] as a

running example and clarify the following de�nitions by considering bounds on the di�erence

between a polynomial and its Bernstein control polygon.

The vector space B for this example is the space of all polynomials of degree less or equal

to d, and we use the Bernstein polynomials Bdi ,i = 0, . . . , d as its basis, so that any b is

5



6 2. BOUNDS ON NONLINEAR GEOMETRY

written as

b =

d∑
i=0

biB
d
i .

Since we are interested in the di�erence between a polynomial and its Bernstein control

polygon, the space H of simpler objects is the space containing all piecewise linear functions

with breaks at the Greville abscissae i/d, i = 0, . . . , d. The piecewise linear \hat functions"

Hdi with H
d
i (j/d) = [i = j], j = 0, . . . , d, form a basis of H.

The space W = B ∩ H is the space of all functions that are piecewise linear and, simul-

taneously, polynomial of degree at most d, i.e., the linear functions. Therefore, dim W = 2

and

dimU = dimB + dimH − dimW = 2d.

4

We use two linear operators to model the di�erence between objects in B and H: the

map E : B 7→ U which embeds B in U and the map L : B 7→ H which associates one simpler

object with each geometry object. We require L to leave W pointwise �xed. Typically, we

choose the operator L based on some important property of the representation B and take

H = LB so that L is surjective.

The di�erence between a b ∈ B and its simpli�cation Lb is now (E−L)b. The linear map

E− L maps exactly the b ∈ B ∩H =W to 0, i.e., ker(E− L) =W . Therefore, if dim B <∞,

rank(E− L) = dimB − dimW .

Example (continued ). For polynomials in Bernstein form, L maps a polynomial b to its

control polygon, the piecewise linear interpolant of its control points at the Greville abscissae

i/d,

Lb =

d∑
i=0

biH
d
i .

By the linear precision of the Bernstein polynomials, Lb = b for all b ∈ W and L does indeed

leave W pointwise �xed.

The map E−L maps a polynomial b to the di�erence between it and the control polygon,

a piecewise polynomial with breaks at the Greville abscissae. The rank of E−L is (d+1)−2 =

d− 1. 4

2.2. Representing the difference

We split the di�erence (E−L)b into two parts by rerepresenting b in a basis K of (E−L)B.

Theorem 1. Let s = rank(E − L) if dimB < ∞ and s = ∞ if dimB = ∞. Let the

linear operators D : B 7→ R
s and K : Rs 7→ B be such that kerD =W and

DK = I, I the identity on Rs.(2.2.3)
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Then

(E− L)b = (E− L)KDb for any b ∈ B.(2.2.4)

We call the linear operator D the di�erence operator and the vector Db the di�erences

of b ∈ B. We call the basis Ki of (E− L)B the antidi�erence basis .

Proof. For brevity, let K∗ = (E−L)K. We extend D to a map D∗ on all of U by de�ning

D∗h = 0 for any h ∈ H. This means that D = D∗E and that kerD∗ = H. Therefore,

D∗(E− L) = D which implies that D∗(E− L)b = Db and that

D∗K∗Db = D∗(E− L)KDb = DKDb = Db.

Therefore,

Db−D∗K∗Db = 0,

D∗(Eb− K∗Db) = 0,

and, since kerD∗ = H,

Eb− K∗Db ∈ H,

which means, since Lb ∈ H, that

(E− L)b− K∗Db = (E− L)(b− KDb) ∈ H.

But if for a c ∈ B, (E− L)c ∈ H, then Ec = c ∈ H and c ∈ B ∩H = ker(E− L), and therefore

(E− L)(b− KDb) = 0 and (E− L)b = (E− L)KDb as claimed.

Remark 1. For a given D, the solution K to equation (2.2.3) is not uniquely determined.

Solutions to (2.2.3) di�er only by elements of ker D =W , though. In the following chapters,

we choose a unique solution to (2.2.3) by enforcing additional constraints on the functions

K, for example by making their control polygons symmetric.

Remark 2. For dimB <∞, the requirement kerD =W implies that rankD = dimB −

dimW = rank(E − L). The choice s = rank(E − L) is therefore the smallest possible. A

theorem similar to Theorem 1 can be proven for values s > rank(E − L). This amounts to

constructing a K that merely spans (E − L)B instead of forming a basis of (E − L)B. The

additional degrees of freedom in choosing D with an s > rank(E−L) can be used to construct

an antidi�erence basis K with additional properties. For the bounds derived in the following

chapters, these additional degrees of freedom have never proven to be useful so that we will

always use the minimal choice for s.

Remark 3. The support of the function (E− L)Ki does not need to be �nite, even if the

basis functions Bj are �nitely supported. The support of (E− L)Ki will only be �nite if L is

chosen so that b = Lb outside of a �nite interval for all b ∈ B.
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Example (continued ). For Bernstein polynomials, we choose the second di�erences of

the control points of b as D so that the vector Db is de�ned as

Dj−1b = bj−1 − 2bj + bj+1 j = 1, . . . , d− 1.

Clearly, Dh = 0 for any h ∈ B ∩H.
Since dim B < ∞, Equation (2.2.3) is an equation between matrices K and D. The map

K is represented as a d+ 1× d− 1 matrix, while D is a d− 1× d+ 1 matrix. A solution to

the equation DK = I consists of polynomials Ki with

Ki =

d∑
j=0

Ki,j B
d
j Ki,j =

1

2
|i− j+ 1| , 0 ≤ i ≤ d− 2, 0 ≤ j ≤ d.

Note that the functions Ki are convex because their control polygons are convex. 4

2.3. Range estimation

We are now in the position to derive bounds on (E − L)b by using the change of basis

from Theorem 1 and an estimate on the range of the operator K on Rs by estimating the

terms in the scalar product between (E− L)K and Db.

De�ne the (nonlinear) operators bb·cc and dd·ee on Rs such that for a v ∈ Rs the vector

bbvcc ∈ Rs (ddvee ∈ Rs) is obtained from v by replacing all positive (negative) entries in v by

0. Therefore, bbvcc contains only entries which are nonpositive and ddvee contains only entries

which are nonnegative.

Theorem 2. Let s and the linear operators K and D be de�ned as in Theorem 1. Let

bKc , dKe : Rs 7→ B be linear operators such that the following inequalities hold pointwise:

bKc ei ≤ (E− L)Kei = (E− L)Ki ≤ dKe ei,(2.3.5)

where the ei are the canonical basis vectors of Rs, i.e., eij = [i = j], 0 ≤ i, j < s. The

di�erence (E− L)b between any b ∈ B and Lb is bounded by

bKc ddDbee+ dKe bbDbcc ≤ (E− L)KDb ≤ bKc bbDbcc+ dKe ddDbee(M)

Proof. We only show the second inequality. For a b ∈ B, let v = Db, v = bbDbcc,
v = ddDbee in Rs. By Theorem 1, (E−L)b = (E−L)Kv. The scalar product between (E−L)K

and v is bounded by

(E− L)Kv =

s∑
i=0

(E− L)Kvie
i =

s∑
i=0

(E− L)K (vi + vi)e
i

=

s∑
i=0

vi (E− L)Kei +

s∑
i=0

vi (E− L)Kei

≤
s∑
i=0

vi bKc ei +
s∑
i=0

vi dKe ei = bKc v+ dKe v.

The proof of the �rst inequality is analogous.
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Remark 4. The bound on (E − L)b from Equation (M) is turned into an envelope, an

o�set of Lb, by adding Lb to the inequalities (M). This yields lower and upper envelopes of

b,

Lb+ bKc ddDbee+ dKe bbDbcc ≤ b ≤ Lb+ bKc bbDbcc+ dKe ddDbee.

We often abbreviate the expressions on the left and on the right to b and b if D, L and K

are understood from the context and write b ≤ b ≤ b.

Remark 5. If bKc ≤ 0 ≤ dKe, as is often the case, the lower and upper envelopes b and

b of a function b enclose both the function b and its simpli�cation Lb. The width of the

envelope, b− b is then an upper bound on the distance between b and Lb,

|b− Lb| ≤ b− b.

This is no longer the case if either bKc takes on positive values or dKe takes on negative

values.

For practical computations, the estimates bKc and dKe are precomputed and can usually

be represented by a few constants. The map K depends on B, H and the di�erence operator

D which are �xed for a speci�c application.

Since the functions Kei are elements of B, we seem to have come full circle: to estimate

the di�erence between functions b in B and their simpli�cation Lb in H, we need to bound

certain functions in B by functions in H. We made progress, however, for two reasons: �rstly,

we can bound (E − L)b for any function in B if we can �nd bounds for a small number of

functions in B and secondly, since, with an appropriate choice of D, we can choose functions

Kei which are simple to bound by functions from H.
Theorem 2 is valid for any bKc and dKe that ful�ll Equation (2.3.5); the practical compu-

tation of bounds (M) is usually easier if bKc and dKe are in H. Therefore, we usually compute

bKic by constructing a function h ∈ H with h ≤ Ki and set bKic = h− LKi ≤ (E− L)Ki.

Example (continued). Since the functions Ki for polynomials of degree d computed on

the preceding page are convex and because of the convex hull property of the Bernstein

representation, Ki lies above its control polygon LKi and below its piecewise linear interpolant

at the Greville abscissae j/d. Piecewise linear estimates bKic and dKie on (E − L)Ki are

therefore obtained by subtracting the control polygon LKi from these estimates,

bKic = 0 and dKie =

d∑
j=0

(Ki(j/d) − Ki,j)H
d
j .

4

2.4. Hölder bounds

We can use H�older's inequality to obtain bounds that are in general coarser, but simpler

to compute than the ones from Theorem 2. This yields a pointwise bound on (E − L)b in

terms of a norm of the vector of di�erences of b and a norm on the vector of functions Ki,
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which is a function in U . Further applying a norm on U to this bound gives an estimate of

the norm of (E− L)b as a function.

Theorem 3. Let s and the linear operators D and K be de�ned as in Theorem 1.

Let p and q be such that 1/p+ 1/q = 1 and ‖·‖p and ‖·‖q be vector norms. Then

|(E− L)b| ≤ ‖(E− L)K‖p ‖Db‖q.(H)

Proof. By Theorem 1, (E− L)b = (E− L)KDb. H�older's inequality gives the estimate

|(E− L)b(t)| = |(E− L)K(t)Db| ≤ ‖(E− L)K(t)‖p ‖Db‖q

where we identify (E− L)K(t) with the vector with entries (E− L)Ki(t).

In general, ‖(E− L)K‖p is a function in U . The above bound (H) becomes particularly useful

if we estimate ‖(E− L)K‖p by a function in H as will be the case in Chapter 3.

Using a norm on U gives the promised estimate on the norm of (E− L)b as a function:

Corollary 4. With the assumptions of Theorem 3 and ‖·‖U : U 7→ R a norm,

‖(E− L)b‖U ≤ ‖‖(E− L)K‖p‖U ‖Db‖q.(2.4.6)

Example (continued). We use p = 1 and q =∞. Since

z(t) =

d−2∑
i=0

Ki(t) =
d− 1

2
t2 + t+ 2d− 1,

as is shown in Section 3.4 on page 20, ‖(E− L)K‖1 = (E − L)z. Note that z is quadratic

regardless of the degree d of the polynomials in B. Theorem 3 now asserts that

|(E− L)b(t)| ≤ z(t) d−2
max
i=0
|Dib| .

Since z is a quadratic polynomial with positive leading coe�cients, we can estimate it by its

piecewise linear interpolant at the Greville abscissae, giving us the piecewise linear bound

|(E− L)b(t)| ≤
d∑
j=0

(E− L)z(j/d)
d−2
max
i=0
|Dib| .

Section 3.4 also shows that (E− L)z ≤ d/8. With the norm

‖f‖U = max
t∈[0,1]

|f(t)| for f ∈ U ,

the Corollary 4 asserts that

‖(E− L)b‖U ≤
d

8

d−2
max
i=0
|Dib| .

4
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2.5. Summary of the bounding process

The framework for deriving bounds in this chapter can be summarized in the following

steps. These steps are preprocessing steps, depending only on the space B and therefore

need only be carried out once for each basis.

(1) Choose a space H and an operator L : B 7→ H that leaves W = B∩H pointwise �xed.

(2) Choose a di�erence operator D : B 7→ R
s with kerD =W .

(3) Find K : Rs 7→ B such that DK is the identity on Rs, s = rank(E−L) = dimB−dimW .

(4) For bounds of type (M), determine bKc and dKe. For bounds of type (H), determine

(an upper bound of) ‖K‖p.
With the knowledge of bKc, dKe or ‖K‖p, the implementation of bounds of type (M)

or (H) requires only the computation of bbDbcc, ddDbee or ‖Db‖q and a few scalar products.

2.6. Refinement of the basis

Almost all bases for B used in practice have a re�nement property, namely that, for a

function b ∈ B over the domain U, its restriction to a subdomain S ⊂ U can be e�ciently

represented as a function b̂ ∈ B over U after reparametrization. Changing the representation

from b to b̂ is usually called subdivision referring to the fact that the domain is subdivided

into smaller domains.

Subdivision allows us to use the estimates bKc and dKe of some K to compute envelopes

for functions over S in the same manner as for functions over U without incurring additional

approximation errors.

In fact, many representations, for example B-splines, have the property that certain

di�erences Db of the control polygon of a b tend rapidly to zero as the size of S goes to zero.

If the factor by which Db shrinks under subdivision is known, envelopes of b computed with

the di�erence operator D shrink by at least that factor; this yields a priori estimates on

the maximal size of S for which the width of the envelope of b̂ is smaller than a prespeci�ed

tolerance. Section 3.6 on page 24 explains this for uniform splines.

Subdivision can also be used to improve estimates bKc and dKe on K as is explained in

Section 3.7.1 and to approximate solutions to one{ and two{sided approximation problems

as is shown in Section 5.4 on page 58.
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CHAPTER 3

Univariate functions

We demonstrate the framework laid out in Chapter 2 for two cases: splines and the

cubic interpolatory subdivision scheme. Piecewise linear envelopes for splines are of great

practical importance because they are routinely used as approximating functions and for

representing geometry for numerical calculations. The e�ciency of many applications, for

example rendering or intersection testing, hinges on a tight quantitative estimate of the

maximal distance of the spline from its control polygon.

We consider cubic interpolatory subdivision because the basis for this scheme lacks most

of the useful features of the B{spline basis. We can still derive piecewise linear envelopes for

cubic interpolatory subdivision functions solely based on their subdividabilty and on their

smoothness.

3.1. Splines in B–spline form

A piecewise polynomial b of degree d is in B{Spline form if

b(t) =
∑
k∈Z

bkN
d
k(t)

where the control points bk are real numbers and the B{Spline basis functions N
d
k are de�ned

recursively based on a nondecreasing sequence of real numbers, the knot sequence (ti) [6].

The following is valid both for �nite knot sequences and for in�nite knot sequences (ti).

We may assume that b is at least continuous. Otherwise, we can treat b as two separate

splines. This implies that any knot can appear with multiplicity at most d, except for the

�rst and last knot of a �nite knot sequence (ti) which can have multiplicity d+ 1.

Figure 3.1. A quadratic spline over the knot sequence (0, 0, 0, 1, 3, 4, 7, 8, 8, 8)

with control points (0, 2, 4, 2, 0, 2, 3). The spline is shown in black. The enve-

lope according to Theorem 5 on page 16 is shown in grey. The control polygon

is covered by the envelope.

13
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Figure 3.2. A quintic spline and its envelope according to Theorem 5. The

knots are at (0, 1, 3, 7) and the control points are (0, 1, 2, 0, 0, 1, 1, 0). The �rst

and last knot have multiplicity 6.

Therefore, the Greville abscissae t∗k,

t∗k :=
1

d

k+d∑
i=k+1

ti,

are distinct.

The control polygon Lb,

(Lb)(t) =
∑
k∈Z

bkHk(t)

of b is the piecewise linear interpolant to the control points bk at the Greville abscissae t
∗
k.

The \hat functions" Hk are the piecewise linear functions with

Hk(t) =


t− t∗k−1
t∗k − t∗k−1

t ∈ [t∗k−1, t
∗
k]

t∗k+1 − t

t∗k+1 − t∗k
t ∈ [t∗k, t

∗
k+1]

0 otherwise.

The �rst and second divided di�erences of b are

b ′i = d
bi − bi−1

ti+d − ti
b ′′i = (d− 1)

b ′i − b
′
i−1

ti+d−1 − ti
.

The b ′i are the control points of the �rst derivative b
′ of b in the B-spline basis Nd−1

i .

3.2. Envelopes for splines

We construct piecewise linear envelopes for splines over a given knot sequence (ti) by

comparing a spline b to its control polygon Lb, yielding envelopes that are o�sets of the

control polygon Lb. In the notation developed in Chapter 2, we have B = span {Ndk} and

H = span {Hk}. By the linear precision of the B-spline representation, the space B ∩ H
consists of all linear functions and the operator L de�ned in the previous section leaves H∩B
pointwise �xed.
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... i−2 i−1 i i+1 i+2 ...

K
i

LK
i

Figure 3.3. A function Ki for uniform cubic splines over the knot sequence

ti = i. Outside of the interval [i−1, i+1], Ki coincides with its control polygon

LKi.

The di�erence operators D need to annihilate all linear functions. We de�ne D as the

centered second di�erences of b,

Dib = b ′i+1 − b ′i.

Only the control points bi−1, bi, and bi+1 in
uence Di. The functions K that ful�ll DK = I

have the B-spline representation Ki =
∑
j∈Z Ki,jN

d
j with the B-spline coe�cients

Ki,j =
1

2

∣∣t∗j − t∗i
∣∣ .(3.2.7)

The functions Ki are nonnegative since their control polygons are nonnegative and convex

since their control polygons are convex.

With these de�nitions, Theorem 1 on page 6 applies and the di�erence between a spline

b and its control polygon Lb can be written as

(E− L)b = (E− L)KDb for all b ∈ span {Ndi }

Piecewise linear estimates bKc and dKe on (E − L)K can be easily obtained from the

nonnegativity and convexity of the functions K: from below, (E − L)K is bounded by zero,

and from above by the piecewise linear interpolant of the values (E− L)K(t∗k), i.e.,

bKic = 0 dKie =
∑
k∈Z

vi,kHk
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where vi,k = (E− L)Ki(t
∗
k) are constants that only depend on the knot sequence (ti) and the

degree d of the B-spline basis. With these de�nitions and by Theorem 2 on page 8, we have

the following theorem.

Theorem 5. Let b be a spline of degree d over the knot sequence (ti), D the centered

second di�erences, and vi,k = (E − L)Ki(t
∗
k). The distance between b and its control

polygon Lb is bounded by

bbDbccvH ≤ (E− L)b ≤ ddDbeevH(3.2.8)

or, more detailed,∑
i∈Z

bbDibcc
∑
k∈Z

vi,kHk ≤ (E− L)b ≤
∑
i∈Z

ddDibee
∑
k∈Z

vi,kHk.(3.2.9)

3.2.1. Implementation. Figure 3.3 suggests that, for any �xed i, Ki and LKi are iden-

tical outside a small intervall around t∗i . This is true because of the linear precision of the

B-spline representation and because of the local support of B-splines. For a practical imple-

mentation, it is imperative to determine exactly the intervals over which the (E − L)Ki are

nonzero and which constants vi,k are therefore nonzero.

In evaluating the sums in equation (3.2.8) it su�ces to take the inner sums over all

k ∈ I(i) with

I(i) = {k : (E− L)Ki(t
∗
k) > 0 } .(3.2.10)

Since, for a �xed t∗k, Ki(t
∗
k) and LKi(t

∗
k) coincide whenever the control points Ki,j that

in
uence Ki at t
∗
k lie on a straight line, (E − L)Ki(t

∗
k) can only be nonzero if t∗k is in the

intersections of the support of Ndi−1 and N
d
i+1. Since a B-spline basis function N

d
j is nonzero

only on the interval (tj, tj+d+1), the constants vi,k can therefore be only nonzero for t∗k ∈
(ti+1, ti+d). The set I(i) is therefore

I(i) = {k : ti+1 < t
∗
k < ti+d } .

Conversely, the sets I∗(k),

I∗(k) = { i : k ∈ I(i) } = { i : ti+1 < t
∗
k < ti+d } ,

contains all indices i for which Dib in
uences the bound from Theorem 5 at t∗k. I∗(k)
contains at most d− 1 elements. We can therefore compute the bound from Theorem 5 as∑

i∈Z

bbDibcc
∑
k∈I(i)

vi,kHk ≤ (E− L)b ≤
∑
i∈Z

ddDibee
∑
k∈I(i)

vi,kHk

or as ∑
k∈Z

Hk
∑
i∈I∗(k)

bbDibccvi,k ≤ (E− L)b ≤
∑
k∈Z

Hk
∑
i∈I∗(k)

ddDibeevi,k.(3.2.11)

For an e�cient implementation, we use the second formulation and precompute the I∗(·)
and the vi,k for i ∈ I∗(k). Computing the lower and upper envelope from Theorem 5 for any

b over the �xed knot sequence (ti) then only requires computing one second di�erence and

one scalar product with d− 1 terms for each Greville abscissa t∗k.
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Example. For Bernstein polynomials of degree d, the knots are ti = [i > d], i =

0, . . . , 2d− 1. The Greville abscissae are t∗k = k/d, so that

I(i) =

{
{1, . . . , d− 1} 1 ≤ i ≤ d− 1

∅ otherwise.

4

3.2.2. Sharpness and convergence. The envelope from Theorem 5 is sharp in the

sense that the upper (lower) part of the envelope equals b at t∗k if Dib ≥ 0 (Dib ≤ 0) for
all i ∈ I∗(k) since the dKie are piecewise linear interpolants of (E− L)Ki. This is the case if

the whole polynomial piece of b on which b(t∗k) lies is convex (concave). In particular, the

envelope is sharp for splines of degree 2 since I∗(k) = {k} contains only one element.

Sharpness implies that, under subdivison, the width of the envelope shrinks quadratically

in the distance of the knots: since the envelope consists of linear pieces, the maximum width

is attained at the break points. Since a spline has only �nitely many in
ection points almost

all pieces generated by subdivision are either concave or convex for which the width of the

envelope equals the distance of the spline to the control polygon which is known to decrease

quadratically [2, 3, 25]. This ensures that the envelopes are suitable for use in root �nding

algorithms that re�ne root enclosures through adaptive re�nement of the control polygon.

3.3. Hölder envelopes

The envelope in Theorem 5 requires the evaluation of d − 1 values vi,k at each Greville

abscissa t∗k in the precomputation phase. We can reduce the computational cost to just

one evaluation per Greville abscissa by subsuming the values of the v:,k into one spline z and

estimating its values. The resulting envelopes, though very simple to compute, are in general

considerably larger than the ones from Theorem 5.

Lemma 6. Let t ∈ [tl, tl+1). Then∑
i

(E− L)Ki(t) = (E− L)zm(t)

with

zm(t) =
∑
j

(
jt∗j +

m∑
i=j

t∗i

)
Ndj for any m ≥ l− 1.(3.3.12)

zm is strictly convex and (E− L)zm ≥ 0.

Proof. For brevity, we suppress the argument t. Ki can only be nonzero at t if l− d <

i < l. Therefore, by (3.2.7),∑
i

(E− L)Ki = (E− L)

l−1∑
i=l−d+1

Ki =
1

2
(E− L)

l−1∑
i=l−d+1

l∑
j=l−d

∣∣t∗i − t∗j
∣∣Ndj ,
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0 1 2 4

Figure 3.4. The function z de�ned in Equation 3.3.12 on the preceding page

for cubic splines over the knot sequence (0, 0, 0, 0, 1, 2, 4, 4, 4, 4). The grey lines

indicate the position of the Greville abscissae. Knots are shown as ticks on the

x{axis. The values of z range from 0 to 0.26.

since (E− L)b = 0 for any linear function b, this equals

=
1

2
(E− L)

l∑
j=l−d

[
l−1∑

i=l−d+1

∣∣t∗i − t∗j
∣∣+ l−1∑

i=l−d+1

(t∗i − t∗j )

]
Ndj

=
1

2
(E− L)

l∑
j=l−d

[
l−1∑
i=j

2(t∗i − t∗j )

]
Ndj

= (E− L)

l∑
j=l−d

[
(j− l)t∗j +

l−1∑
i=j

t∗i

]
Ndj ,

which equals, again because E− L annihilates linear functions,

= (E− L)

l∑
j=l−d

[
jt∗j +

l−1∑
i=j

t∗i

]
Ndj .

By the locality of the B-spline-basis Ndj , we can extend the range of summation in the outer

sum to all j. The upper limit l − 1 in the inner summation can be raised to an arbitrary

integer m ≥ l− 1 since E− L annihilates linear functions.

It is easy to check that the B-spline coe�cients z ′′j of the second derivative of z are

positive. This implies, by the convex hull property of the B-spline representation, that

(E− L)zm(t) ≥ 0.

Theorem 7. The di�erence between the spline b and its B{spline control polygon

Lb over the interval [t∗k, t
∗
k+1] is bounded by

|(E− L)b| ≤ µ (E− L)zk+d.(3.3.13)

where µ(t) = max { |Dib| : l− d < i < l and t ∈ [tl, tl+1) }.
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Figure 3.5. A cubic spline and its envelope according to Theorem 5 (top)

and Corollary 8 (bottom) over the knot sequence (0, 0, 0, 0, 1, 2, 4, 4, 4, 4) with

control points (0, 1, 3, 0, 3, 2).

Proof. Using Theorem 3 on page 10 with p = 1 and q =∞, we have

|(E− L)b| ≤ ‖(E− L)K‖1 ‖Db‖∞.
According to Lemma 6, ‖(E− L)K(t)‖1 = zk+d(t) for any t ∈ [t∗k, t

∗
k+1]. The computation of

‖Db‖∞ need only extend over the elements Dib of Db for which (E− L)Ki 6= 0.

Corollary 8. The di�erence between b and its control polygon Lb is bounded by

|(E− L)b| ≤
∑
k

µ(t∗k) ζkHk

where ζk = (E− L)zk+d(t∗k).

Proof. This is an easy consequence of Theorem 7 and the fact that zm is convex.

3.3.1. Bounding with a quadratic spline. The same considerations as in Theorem 7

but with divided instead of centered second di�erences yield a quadratic bounding spline.

Corollary 9. The di�erence between the spline b and its control polygon Lb over

the interval [t∗k, t
∗
k+1] is bounded by

|(E− L)b| ≤ µ(t)�zk+d

where µ(t) = max { |b ′′i | : l− d < i < l and t ∈ [tl, tl+1) }. The function �z =
∑

�zjN
d
j is a

quadratic spline with �z ′′ = 1.
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Proof. Using divided second di�erences D,

Dib = b ′′i =
d− 1

ti+d−1 − ti
Di−1,

a solution K to DK = I is given by the functions Ki with

Ki =
ti+d−1 − ti

d− 1
Ki−1 =

∑
j

1

2

ti+d−1 − ti

d− 1

∣∣t∗i−1 − t∗j
∣∣ Ndj .

In analogy to the proof of Theorem 7 we �nd that the function �zm =
∑
i(E − L)Ki is given

by

�zm =
∑
j

m∑
i=j

ti+d − ti+1

d− 1

∣∣t∗i − t∗j
∣∣ Ndj .

It is now easy to verify that the B-spline coe�cients of the second derivative of �zm are equal

to 1 so that �z ′′ = 1.

3.3.2. Implementation. In practice, the knot sequence (ti) is �nite, (ti) = (t0, . . . , tm+d).

The envelope from Corollary 8 requires µ(t∗k) and z(t
∗
k) for the Greville abscissae t

∗
0, . . . , t

∗
m.

For �nite knot sequences, we only need to compute the spline zm for envelopes over all

the [t∗k, t
∗
k+1]. The B-spline coe�cients zmj can be computed from the iteration

zmj = (m+ 1) t∗m

zmj = zmj+1 −
j+ 1

d
(tj+d+1 − tj+1) for j = m− 1 . . . 0.

While µ(t∗k) depends on the control points bi, the underlying index sets do not and need

only be updated when the knot sequence is changed.

An e�cient implementation of the bound of Corollary 8 stores the values t∗k, z(t
∗
k), and

the index sets used to compute µ(t∗k) together with the knot sequence, so that only second

di�erences and their maximum µ(t∗k) need to be recomputed whenever the control points of

a spline change.

3.3.3. Sharpness. The H�older inequality, which is the only inequality used to proof

Theorem 7 on page 18, becomes an equality when all the second di�erences Di used to

compute µ(t) are equal. The splines with this property are the linear polynomials and z.

Similarly, the bound from Corollary 9 is sharp for the linear polynomials and �z, and therefore

for all quadratic polynomials.

3.4. A bound for Bernstein polynomials

The B{splines Ndj of degree d over the knot sequence (ti) with ti = [i > d], i = 0, . . . , 2d−1

are called the Bernstein polynomials Bdj of degree d. An explicit bound for the Bernstein

polynomials was already given in [19, Theorem 3.1]; we give an alternate proof for this

theorem, showing how it can be derived from the more general exposition in this chapter.



3.5. A BOUND FOR UNIFORM SPLINES 21

For Bernstein polynomials, the Greville abscissae are t∗i = i/d and the coe�cients zmj ,

m = 2d− 1 are

zmj =
j(j+ 1)

2d
+ 2d− 1 =

1

d

(
j

2

)
+
j

d
+ 2d− 1.

Thus,

zm(t) =
d− 1

2
t2 + t+ 2d− 1

and

(E− L)zm(t∗k) =
k(d− k)

2d2
.

The maximal value (E− L)zm(t∗k) over all k is taken on for k = bd/2c and the main theorem

from [19] follows as a special case of Theorem 7:

Theorem 10 ([19, Theorem 3.1]). Let b =
∑d
i=0 biB

d
i be a polynomial of degree d in

Bernstein{B�ezier form. The distance between b and its control polygon Lb is uniformly

bounded by

|(E− L)b| ≤ bd/2c dd/2e
2d

d−1
max
i=1
|bi−1 − 2bi + bi+1| .

This bound decreases by a factor of 4 under subdivision at 1/2 [19, Lemma 6.1]. Fig-

ures 3.6 on the next page and 3.7 on page 23 compare the convex hull, the min{max enve-

lope and various H�older bounds and show the e�ect of subdivision and re�nement on the

envelopes.

3.5. A bound for uniform splines

A spline is uniform if the knots are equidistant. Without loss of generality, we choose

tk = k. The uniform B{spline basis functions Ndj are shifts of one another and we de�ne

Nd = Nd0 so that Ndj (t) = Nd(t− j). The corresponding Greville abscissae are

t∗k =
1

d

k+d∑
i=k+1

i = k+
d+ 1

2

and zm has the B{spline coe�cients

zmj = j(j+
d+ 1

2
) +

m∑
i=j

(
i+

d+ 1

2

)
= (m+ 1)(j+

d+ 1

2
) +

(
j−m

2

)
.

Equation (3.3.12) simpli�es for uniform splines to

zm =
∑
j

[
(m+ 1)(j+

d+ 1

2
) +

(
j−m

2

)]
Ndj ,
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Figure 3.6. Bernstein polynomials and envelopes: the control polygon is

dashed, bounding regions are shaded. Control polygons from top to bottom:

(1) [0 1 1 0], (2) [0 1 3 6 10 14], (3) [0 1 2 3 2 1], (4) [0 1 − 1 0], (5)

[0 − 7 2 − 5 4], (6) the same polynomial raised to degree 10. Bounds from

left to right: all bounds compare to the control polygon, with D second di�er-

ences, except for (a), which uses �rst di�erences. Types of bounds: (a) (H1),

(b) (H∞), (c) (H2), (d) (H1).
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Figure 3.7. Bernstein polynomials and envelopes: the control polygon is

dashed, bounding regions are shaded. Comparison of min{max envelope and

convex hull to the (H1) bound for D second di�erences of the control points.

From top to bottom: functions as in Figure 3.6. From left to right: (a) Min{

max bound on the Bernstein basis functions, (b) the (H1) bound clipped against

(a), (c) the (H1) bound clipped against (d), (d) the convex hull of the control

points.
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so that zm is a quadratic spline, regardless of the degree of b. Therefore, (E − L)zk+d is a

quadratic polynomial over the interval [t∗k, t
∗
k+1] with

zk+d(t) =
1

2

(
t2 − (t∗k + t∗k+1)t+

(
t∗k + t∗k+1

2

)2
+
d− 2

12

)
.

Since z is a positive and convex function, it attains its maximum over [t∗k, t
∗
k+1] at one of the

endpoints of the interval. Its values there are

z(t∗k) = z(t∗k+1) =
d+ 1

24
.

This proves the following simpli�ed version of Corollary 8, which yields a particularly simple

H�older envelope for uniform spline:

Corollary 11. Let b be a uniform spline over the knot sequence tk = k. The

di�erence between b and its control polygon Lb is bounded by

|(E− L)b| ≤ d+ 1

2

∑
k

µ(t∗k)Hk.

For uniform splines, the computation of µ(t∗k) simpli�es to

µ(t∗k) = max {Dib : k− bd/2c < i < k+ bd/2c } .

Since z(t∗k) = (d + 1)/24 and I∗(k) = {k} for d = 2 or d = 3, the bound from Theorem 5 in

the form of Equation 3.2.11 reduces for quadratic and cubic uniform splines to

d+ 1

24

∑
k∈Z

bbDkbccHk ≤ (E− L)b ≤ d+ 1

24

∑
k∈Z

ddDkbeeHk.(3.5.14)

This implies, in particular, that the above envelope for quadratic and cubic uniform splines

is sharp so that the breaks of the envelope are the control points and the values of the spline

at the Greville abscissae.

3.6. Uniform refinement

An important operation on splines is the re�nement of the knot sequence, or knot in-

sertion. Knot insertion changes the representation of the piecewise polynomial p over the

original knot sequence to one over an enlarged knot sequence.

For uniform splines, we consider the re�nement of the knot sequence tk = k to the

sequence t̂k = k/2. We now have two representations for b,

b(t) =
∑
k

bkN
d(t− k) =

∑
k

b̂kN
d(2t− k),
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where the new control points b̂k are linear combinations of the old control points bk, given

by

b̂2i = 2−d

dd/2e∑
j=0

(
d+ 1

2j

)
bi−j,(3.6.15)

b̂2i+1 = 2−d

dd/2e∑
j=0

(
d+ 1

2j+ 1

)
bi−j.(3.6.16)

Since b ′′i = Di−1b, we can use the B{spline representation of b ′′ together with equa-

tion (3.6.15) to relate the centered second di�erences of the new control polygon to those of

the old control polygon as

2dD2ib̂ =
∑
j

(
d− 1

2j− 1

)
Di−jb 2dD2i+1b̂ =

∑
j

(
d− 1

2j

)
Di−jb.

The equality
∑
j

(
d−1
j

)
= 2d−1 and the symmetry of the binomial coe�cients imply∑

j

(
d− 1

2j

)
=
∑
j

(
d− 1

2j− 1

)
= 2d−2,

so that

max
i

∣∣Dib̂∣∣ ≤ 1
4
max
i
|Dib|.

This ensures that the bound from Corollary 11 converges quadratically to zero under repeated

uniform re�nement. Figure 3.8 illustrates this for a cubic uniform spline.

Example. For quadratic splines, uniform re�nement is called Chaikin's algorithm and

b̂2i = 2−2(3bi−1 + bi), b̂2i+1 = 2−2(bi−1 + 3bi).

This yields

D2ib̂ = D2i−1b̂ =
1

4
Di−1b.

Since every second di�erence decreases by a factor of four, subsequent envelopes are contained

in one another.

Similarly, for cubic splines we have

b̂2i = 2−3(bi−2 + 6bi−1 + bi), b̂2i+1 = 2−3(4bi−1 + 4bi).

and therefore

D2ib̂ =
1

4
Di−1b, D2i+1b̂ =

1

8
(Di−1b+Dib).

4
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Figure 3.8. A uniform cubic spline with control points (0, 1, 3, 0, 3, 2). Shown

are the envelope according to equation (3.5.14) (top) and the envelope after

one step of uniform re�nement (bottom).

3.7. Cubic interpolatory subdivision

In cubic interpolatory subdivision [ 9], functions b are de�ned as the limit of a subdivision

process. One subdivision step re�nes a control polygon b with breaks at all i ∈ Z, to one

with twice as many control points b̂ with breaks at i ∈ Z/2. It is interpolatory, since old

control points are copied through the rule b̂2i = bi and cubic since the remaining new control

points b̂2i+1 are obtained by evaluating the cubic interpolant qi of bi−1, bi, bi+1, bi+2 with

ordinates −3,−1, 1, 3 at 0, b̂2i+1 = qi(0). The limit function obtained by this process is C1.
This scheme di�ers signi�cantly from the polynomial spline bases since the basis functions

Cj for this scheme have no known closed{form representation. Figure 3.9 shows the basis

function C0 obtained from subdividing the control polygon b with bi = [i = 0]. C0 is nonzero

only on the interval [−3, 3]. Because of the uniformity of the subdivision scheme, all basis

functions Ci are shifts of each other, Ci(t) = C0(t − i). The space B is the space of all

functions obtainable by cubic interpolatory subdivision; it is spanned by the functions Ci

which also form a basis of B.
The scheme possesses cubic precision by construction, i.e., if the input polygon lies on

a cubic polynomial p, the limit function is that cubic polynomial p.
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Cubic interpolatory subdivision does not possess the convex hull property since the basis

functions take on negative values (cf. Figure 3.9). Therefore, there is no convex hull bound.

The only published bounds that lend themselves easily to constructing envelopes for this

scheme are the piecewise constant bounds in [ 16].

3.7.1. Linear envelopes and the subdivide–and–bound procedure. For a function

b ∈ B, its control polygon Lb is the piecewise linear interpolant at the integers,

Lb =
∑
j

bjHj for b =
∑
j

bjCj.

The Hj are the piecewise linear functions with breaks at the integers for which Hj(i) = [i = j]

for i ∈ Z.
A bound on the di�erence between b and its control polygon Lb is obtained by choosing

D as the second di�erence operator. The i{th component of Db is Dib = bi−1 − 2bi + bi+1.

The control polygon of the antidi�erence Ki corresponding to this di�erence is

Ki,j = |j− i| /2, Ki =
∑
j

Ki,jCj.

Clearly, DK = I where I is the identity on R∞. Because cubic interpolatory subdivision

reproduces linear functions and because of the size of the support of C0, (E−L)K0(t) = 0 for

all t 6∈ [−2, 2].

We compute piecewise linear bounds bKc and dKe for K using subdivision to iteratively

re�ne a rough estimate to tighter bounds. Because of the uniformity of cubic interpolatory

subdivision, it su�ces to compute bounds on K0 on [−2, 2]. Bounds on Ki are obtained as

integer shifts of the bounds on K0.

−3 −2 −1 0 1 2 3
−1/5

0

1

Figure 3.9. The basis function C0 of cubic interpolatory subdivision.
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−3 −2 −1 0 1 2 3
0

1

2

3

Figure 3.10. The antidi�erence K0 with respect to the centered second dif-

ferences Di centered at 0.

Let r > 0 be a �xed integer and e0 and e0 be a piecewise linear envelope of (E−L)K0 over

[−2, 2] with breaks at {−2,−1, 0, 1, 2},

e0 =

2∑
j=−2

e0(j)Hj, e0 =

2∑
j=−2

e0(j)Hj.

We use this initial envelope to construct a piecewise linear envelope of the r times subdivided

control polygon cr of K0 on [−2, 2]. The envelope consists of two piecewise linear functions,

er and er, with er ≤ (E − L)K0 ≤ er. The polylines er and er have their breaks exactly at

the breaks ui = i/2r, i = −2r+1, . . . , 2r+1 of cr. We construct an improved upper envelope e ′0
from er by solving a linear program with constraints

er(ui) ≤ e ′0(ui) for each ui

minimizing the error max i{e
′
0(ui) − er(ui)}. The variables of the linear program are the �ve

values e ′0(j), j = −2, . . . , 2. Similarly, an improved lower envelope e ′0 is computed from er.

This process is iterated with e ′0 and e
′
0 as initial envelopes for K0 until initial and improved

envelopes in an iteration step are within a prespeci�ed tolerance. The envelopes of K0 can

be further improved by repeating the whole iteration for a larger subdivision level r.

Table 3.1. Piecewise linear upper and lower envelopes of (E−L)K0 over [−2, 2].

The values are directionally truncated to 4 digits precision.

i −2 −1 0 1 2

e(i) 0.0 −0.0055 −0.1277 −0.0055 0.0

e(i) 0.0 0.0056 0.0001 0.0056 0.0
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Figure 3.11. A cubic interpolatory subdivision function (black) with its con-

trol polygon (black squares) and the envelope according to Theorem 2 on

page 8.

Applying the above iteration for r = 9 yields the values given in Table 3.1. The envelope

for a function b with control polygon bi is the piecewise linear interpolant of

bi +

1∑
j=−1

e(i)ddDi+jbee+ e(i)bbDi+jbcc

for the lower envelope and

bi +

1∑
j=−1

e(i)ddDi+jbee+ e(i)bbDi+jbcc

for the upper envelope.

−5 −3 −1 1 3 5

0

6

Figure 3.12. The antidi�erence K0 for the fourth di�erences discussed in Section 3.7.2.

3.7.2. Cubic envelopes. We can also envelope functions in B by cubic splines. This lets

us represent one cubic interpolatory subdivision function by two cubic splines and demon-

strates that the approach from Chapter 2 is not restricted to piecewise linear envelopes.

Let H = span {N3j } be a cubic spline space with N3j the C1 cubic B-splines over the knot
sequence (ti) = (. . . ,−1,−1, 0, 0, 1, 1, . . . ). The functions that can be represented both by

cubic interpolatory subdivision and as cubic splines in H are exactly the cubic polynomials.
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We therefore need to choose a di�erence operator D that annihilates cubic polynomials. We

use fourth centered di�erences for D, so that the i{th component of Db is given by

Dib = bi−2 − 3bi−1 + 6bi − 3bi+1 + bi+2.

The antidi�erences K are determined up to cubic polynomials. We use these four degrees of

freedom to obtain symmetric antidi�erences. Figure 3.12 shows a �nite part of the antidif-

ference K0 corresponding to the di�erence operator D0; all of K0 is obtained by extending the

control polygon of K0 cubically, i.e., so that the fourth di�erences involving control points

not depicted in Figure 3.12 are 0. The antidi�erences Ki are shifts Ki(·) = K0(·− i) of K0 so
that it su�ces to compute enclosures bK0c and dK0e.

To ful�ll the requirements of Theorem 2 on page 8, the operator L that maps a cubic

interpolatory subdivision function b ∈ B to a cubic spline h ∈ H only needs to leave W =

B∩H pointwise �xed. But L has also an in
uence on the size of the support of (E−L)K and

therefore on the size of the support of bKc and dKe.
By the cubic precision of cubic interpolatory subdivision, K is a cubic polynomial outside

of the interval [−2, 2]. We de�ne Lb as the �rst order Hermite interpolant to b at the integers,

Lb(i) = b(i), (Lb) ′(i) = b ′(i), for all i ∈ Z.

This ensures that Lb and b coincide over the interval [i, i+ 1] if b is cubic over this interval

which is the case if and only if the 6 control points bi−2, . . . , bi+3 in
uencing b on [i, i + 1]

lie on one cubic. As a consequence, (E− L)K0 = 0 outside of [−2, 2] so that we only need to

compute estimates bK0c and dK0e over this interval.

−6 −4 −2 0 2 4 6

Figure 3.13. Constraints for estimating (E − L)K0: the upper estimate dK0e
is constrained to be equal to (E − L)K0 (black bars), greater or equal than

(E− L)K0 by the choice of the spline coe�cients (dark grey bars), and greater

or equal than the piecewise linear envelope of (E− L)K0 (light grey bars).

We construct the estimates bK0c and dK0e of (E − L)K0 as cubic splines in H. The

estimates are computed with the help of the piecewise linear envelopes for cubic interpolatory

subdivision functions and envelopes for splines constructed in the previous sections. To
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Figure 3.14. Two cubic interpolatory subdivision functions (black), their

control points (black squares) and their cubic envelopes (grey).

Figure 3.15. The linear (dark grey) and the cubic envelope (light grey) of a

cubic interpolatory subdivision function (black)

bound (E − L)K0 from above, we compute its piecewise linear envelope and construct a

spline h ∈ H above the piecewise linear envelope using the algorithm Support introduced

in Chapter 5. For our purposes, we can consider Support to be a black box that takes

a knot sequence and a piecewise linear function as input and outputs a spline over that
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knot sequence that stays above the input polygon and minimizes the L1 error between input

polygon and spline.

Unfortunately, a spline h computed in this manner has in�nite support since we sandwich

the upper piecewise linear envelope of (E−L)K0 between (E−L)K0 and h. This can be reme-

died by solving Support only over the interval [−2, 2] and imposing additional constraints

on h: since (E − L)K0 = 0 outside of [−2, 2], we construct h such that h = 0 outside of

[−3, 3]. We use the interval [−3,−2]∪ [2, 3] as a transition zone be constraining the B-spline

coe�cients that in
uence h over this interval, but not outside [−3, 3], to be nonnegative,

which implies h ≥ 0 = (E − L)K0 on [−3,−2] ∪ [2, 3]. This gives us enough 
exibility to use

the Support construction on top of the piecewise linear envelope of K0 over [−2, 2].

The estimates dK0e and bK0c are further improved by using the symbolic re�nement

version of Support explained in Section 5.3 on page 57. With this technique, the estimates

dK0e and bK0c can be brought arbitrarily close to the one{sided L1 approximands of (E−L)K0
in the spline space H.

Figure 3.14 shows the cubic envelopes for two cubic interpolatory subdivision functions.

Figure 3.15 shows how the cubic envelope smoothes the linear envelope of a cubic interpo-

latory subdivision function. The estimates bKc and dKe were computed with the symbolic

re�nement version of Support over the knot sequence (t̂i) with t̂i = ti/8.

3.8. Envelopes of parametric curves

It is only a small step to go from the piecewise linear envelopes of univariate functions

to piecewise linear envelopes of parametric curves: enveloping each coordinate function of a

curve seperately yields piecewise linear envelopes for the curve.

Let b be a parametric curve, given in a representation

b =
∑
j

bjBj, bj = (bj
1, . . . ,bj

n) ∈ Rn,

for which we have piecewise linear envelopes for functions, for example uniform cubic splines

or Bernstein polynomials.

For curves b, the functional bound in the i{th component is denoted by

bi ≤ (E− L)bi ≤ b
i
.

The functional bounds are applied componentwise to parametric curves. Then any control

point bk and the curve point b(t∗k) corresponding to bk lie in a box whose width in the ith

component is the bound in the ith component. Therefore, b(t∗k) is located in the axis{aligned

box Sk,

Sk =
{

x : bi(t∗k) ≤ xi − bk
i ≤ xi(t∗k) for i = 1, . . . , n

}
.

Each point of the curve segment b(t), t ∈ [t∗k, t
∗
k+1] lies in a box S(t) that by the linearity

of the functional envelopes is a convex combination of Sk and Sk+1:

S(t) =
t∗k+1 − t

t∗k+1 − t∗k
Sk +

t− t∗k
t∗k+1 − t∗k

Sk+1.
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Figure 3.16. A uniform cubic spline curve (black) and its control points (black

squares). On top, the envelope (grey) is constructed with the H�older bound

from Equation (3.5.14), on the bottom with the bound from Theorem 5 on

page 16

The curve segment is therefore contained in the union of all S(t), t ∈ [t∗k, t
∗
k+1], which is the

convex hull Hk of the corners of Sk and Sk+1. To be speci�c, we discuss the case of planar

curves.

3.8.1. Enveloping planar curves. Let wi,k, i = 1, . . . , 4, be the line segments connect-

ing corresponding corners of Sk and Sk+1; that means w1,k connects the lower left corner of

Sk to the lower left corner of Sk+1, w2,k connects the lower right corner of Sk to the lower

right corner of Sk+1 etc. as in Figure 3.17.

Hk consists of parts of the boundaries of Sk and Sk+1 and exactly two additional line

segments u1,k and u2,k chosen from the wi,k. Since u1,k and u2,k are part of the convex hull

Hk, they do not intersect the interiors of Sk and Sk+1. We do not need to actually compute
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bk+1

bk

Sk+1

Sk

uk
1

uk
2

Figure 3.17. Constructing the envelope of a curve from the bounding rect-

angles Sk and Sk+1: only the outer line segments u1,k and u2,k are part of the

convex hull of Sk ∪ Sk+1 and therefore of the envelope

Figure 3.18. A uniform cubic spline curve (black) and its control points (black

squares). On top, the envelope (grey) is constructed with the H�older bound

from Equation (3.5.14), on the bottom with the bound from Theorem 5 on

page 16

intersections of the wi,k and Sk, Sk+1 to select u1,k and u2,k: since Sk and Sk+1 are axis{

aligned it su�ces to look at the signs of the slopes of the wi,k. The ui,k are separated by the

line from bk to bk+1; we call the one lying to the left of this line u1,k and the one lying to

the right of this line u2,k.
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Figure 3.19. A self{intersecting quartic curve (black) and its control points

(black squares). The envelopes (grey) are constructed with the bound from

Theorem 5 on page 16. The envelope converges rapidly to the curve as the

comparison of the original envelope, top, and the envelope after one step of

uniform re�nement, bottom, shows

The sets Ui = {ui,k} are not yet polylines: consecutive line segments ui,k and ui,k+1 may

intersect or not touch at all. But note that the line extending ui,k always intersects the one

extending ui,k+1. We obtain a proper polyline Wi with exactly one line segment for each

control point of b by taking this intersection as starting point and the intersection with the

line through ui,k+1 as the end point of Wi. The polylines W1 and W2 then form a local

envelope of b: the curve{piece b([t∗k, t
∗
k+1]) lies in the quadrangle spanned by the k{th pieces

of W1 and W2.

Figures 3.16 and 3.18 show global envelopes based on the H�older and on the range esti-

mation envelopes. Figure 3.19 shows the behavior of the global envelope under subdivision.
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CHAPTER 4

Bivariate functions

We now turn to envelopes of bivariate functions and show how the framework from Chap-

ter 2 can be applied to tensor product and bivariate (total{degree) Bernstein polynomials.

The main di�erence between the envelopes for univariate and for bivariate Bernstein poly-

nomials is that basing the envelopes on convex basis functions K and use cheap estimates

bKc and dKe that only exploit the convexity of the K is not su�cient to yield satisfactory en-

velopes. The estimates bKc and dKe have to be obtained through the subdivide{and{bound

procedure introduced in Section 3.7.1 on page 27; therefore, convexity, and in a sense sim-

plicity, of the Ki is not important anymore and can be traded for simplicity of the di�erence

operators.

This chapter is only concerned with envelopes of functions. Envelopes for parametric

surfaces can be obtained from functional envelopes in a way similar to the construction

for parametric curves in Section 3.8: applying the functional envelopes to the coordinate

functions of a parametric surface at the control points yields axis aligned boxes enclosing the

point on the surface corresponding to the control point. The local linear or bilinear hulls of

these boxes provide an envelope for a part of the surface. The local hulls can then be further

united to yield a global hull.

4.1. Tensor product Bernstein polynomials

A bivariate polynomial b is in tensor product Bernstein form of bidegree d1×d2 if it can
be written as

b(u, v) =

d1∑
i=0

d2∑
j=0

bi,jB
d1,d2
i,j

with Bd1,d2i,j (u, v) = Bd1i (u)Bd2j (v).

The tensor product Bernstein polynomials form a basis of B = span {Bd1,d2i,j }. We are only

concerned with the polynomial over the domain U = [0, 1]×[0, 1]. We use n1×n2, ni = di+1,

to denote the order of a tensor product polynomial of bidigree d1 × d2.
The control net of b has n1n2 control points. We arrange the control points in a regular

quadrilateral n1 × n2 mesh over the xy{plane by assigning the Greville abscissa t∗ij =

(i/d1, j/d2) to the control point bi,j. We call control points bi,j with (i, j) ∈ {0, d1} × {0, d2}

corner control points and all other control points non{corner control points . A control

point bi,j is called an interior control point if i 6∈ {0, d1} and j 6∈ {0, d2}, and a boundary

control point otherwise.

37
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Let H = span {Hd1,d2i,j } be the space of bilinear functions with breaks at the Greville

abscissae t∗ij with Hi,j = Hd1,d2i,j de�ned as

Hd1,d2i,j = Hd1i H
d2
j

so that Hi,j(t
∗
kl) = [i = k] [l = j]. The control polygon Lb of b is the piecewise bilinear

interpolant of the control points,

Lb =

d1∑
i=0

d2∑
j=0

bi,jHi,j.

The space W = B ∩ H consists of all bilinear functions and has therefore dimension

4. A di�erence operator D must therefore annihilate all bilinear functions. The space of

such di�erence operators is spanned by the univariate second di�erences Duni depicted in

Figure 4.1. There are n1(n2 − 2) + (n1 − 2)n2 univariate second di�erences.

Since dimW = 4, the map E − L has rank s = n1n2 − 4, which is also the rank of Duni.

There are of course many possible choices for a di�erence operator D : B 7→ R
s of full rank,

and therefore many di�erent envelopes for tensor product Bernstein polynomials. We con-

centrate on two particular operators, one for which the antidi�erence basis K is directionally

convex and easily approximated by bilinear functions and one where the di�erence operator

D is particularly simple.

In both cases, we associate one di�erence operator with each control point bi,j except

for the corner control points. To formalise this association, let τ be a map de�ned on the

indices of all non{corner control points that maps bijectively into {0, . . . , n1n2−5}. The k{th

di�erence operator Dk is now associated with the control point bi,j for which k = τ(i, j). With

this association, we call a di�erence operator Dk a boundary operator if bi,j is a boundary

control point and an interior di�erence operator if bi,j is in the interior.

4.1.1. A directionally convex basis K. A tensor product Bernstein polynomial b is

directionally convex if every isoparameter curve b(u, ·) and b(·, v) is convex [26]. This is the

case exactly when the control polygon is convex in both parameter directions and therefore

if Dunib ≥ 0. Such polynomials can be easily bounded from above by their piecewise bilinear

interpolant at the Greville abscissae and from below by their control polygon.

We de�ne di�erence operators D = Dcnv using the masks in Figure 4.1. Each second

di�erence Dcnv
k , k = τ(i, j), corresponds to exactly one non{corner control point bi,j. For

k = τ(i, j), a di�erence operator Dcnv
k on the boundary is the univariate second di�erence

along that boundary centered at bi,j. The interior di�erence operator Dcnv
k is the tensor

product of the two univariate di�erences centered at bi,j as depicted on the right in Figure 4.1.

Rather than showing directly that Dcnv has full rank, we �rst describe a matrix K with

DcnvK = I, which implies that both D and K have full rank s.
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Figure 4.1. Second di�erence masks for tensor products: the univariate sec-

ond di�erences in one parameter direction (top) and in the second parameter

direction (bottom left) and the tensor product mask (bottom right) used for

the convex operator Dcnv.

Let the function fdi be de�ned as

fdi (i0) =


i0(d− i)

d
i0 ≤ i

i(d− i0)

d
otherwise.

For the boundary operator Dk, k = τ(i, j), with j = 0 or j = d2, Kk is de�ned as

Kk,i0,j0 =


d2 − j0

d2
fd1i (i0) j = 0

j0

d2
fd1i (i0) j = d2.

The entries Kk,:,: corresponding to a boundary operator Dk with i = 0 or i = d1 are de�ned

analogously.

For an interior operator Dk, we de�ne Kk as

Kk,i0,j0 = fd1i (i0) f
d2
j (j0)

The Kk de�ned in this manner are linear in at least one direction except at Kτ(i,j),i,j. This

means that applying Dk0 to Kk with k 6= k0 yields 0. It is straightforward to check that the

application of Dk to Kk yields 1. Therefore DK = I so that D = Dcnv is of full rank and

kerDcnv =W . This means that, by Theorem 1,

(E− L)b = (E− L)KDcnvb for any b ∈ B.
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Figure 4.2. Di�erence masks Dcnv
k (left) and the corresponding control nets

Kk (right) for tensor product polynomials of bidegree 3× 4. The control nets
Kk are scaled by 12.

It is also straightforward to check that DuniK ≥ 0 so that the functions K induced by Dcnv

are directionally convex. This means that the functions bKkc and dKke de�ned by

bKkc = 0 dKke =

d1∑
i=0

d2∑
j=0

(Kk(t
∗
ij) − Kk,i,j)Hi,j

are piecewise bilinear estimates of (E−L)Kk. Therefore, bKc ≤ (E−L)K ≤ dKe and Theorem 2

on page 8 holds.

The Figures 4.3, 4.4 and 4.5 show examples of envelopes resulting from these estimates

at the top right. The envelopes computed with these estimates are reasonable in many cases.

There are some examples though for which the envelopes are unacceptably bad: the envelope

of the function in Figure 4.3 based on these estimates of K is considerably larger than the

convex hull of the control polygon. The bounds based on Dcnv can be improved considerably

through the subdivide{and{bound procedure that was used to compute bounds for cubic

interpolatory subdivision functions in Section 3.7.1 on page 27.
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w = 1.70

w = 0.31 w = 0.20

Figure 4.3. The bicubic basis function B3,31,1 and some envelopes. Shown are

the function and its control polygon (top left), the envelope based on Dcnv with

simple estimates of K (top right), the envelope based on Dcnv with improved

estimates (bottom left), and the envelope based on Dcmb (bottom right). The

value w gives the maximal width of the respective envelope.

The estimate dKe is already optimal since it interpolates (E−L)K at the Greville abscissae.

We can therefore only improve the estimate bKc; for this, we use the bounds bKc and dKe as
the basis for the initial envelopes e0 and e0 of a function Kk. Splitting Kk uniformly into a

certain number of polynomials, for example d1 × d2, yields a re�ned lower envelope er. An

improved bilinear lower estimate e ′0 for (E − L)Kk is obtained by solving a linear program.

The constraints for this program are linear because we compute bilinear estimates. Applying

this procedure to each Kk in turn produces improved estimates on the range of (E − L)K.

Examples of the improved envelopes can be found in Figures 4.3, 4.4 and 4.5 at the bottom

left. It is clear from these �gures that good estimates bKc and dKe improve the envelope

greatly.

Remark 6. Since bKc now takes on positive values, the control polygon Lb does not have

to lie between the lower envelope b and b anymore. As a consequence, b and b approximate

b with less error than Lb. In applications such as rendering, Lb can no longer be used as a
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w = 0.56

w = 0.13 w = 0.18

Figure 4.4. A bicubic Bernstein polynomial. The boundary coe�cients are

0 and the 4 center coe�cients are 1. Shown are the same envelopes as in

Figure 4.4. The upper envelope at the top right coincides with the control

polygon, while the lower envelope interpolates the function at the Greville

abscissae.

standin for b with b− b as an error bound. This is easily remedied by rendering either b, b

or Lb+ (b− b)/2.

4.1.2. Using univariate second differences. In computing envelopes in practice, the

main e�ort goes into computing di�erences of the control net. It is therefore desirable

to compute envelopes based on di�erences with small masks. We can construct a simple

di�erence operator D = Dcmb by choosing an independent subset of the operators Duni;

the operators we pick are arranged in a comb{pattern. For each control point bi,j with

0 < i < d1, we pick the univariate second di�erence in the i{direction, i.e., the one mapping

bi,j to bi−1,j − 2bi,j + bi+1,j. For control points bi,j on the boundary of the control net with

0 < j < d2 and i ∈ {0, d1}, we pick the univariate second di�erence in the j{direction.

We de�ne a matrix K in terms of Dcmb in the following manner: for an operator Dk with

k = τ(i, j) and 0 < i < d1,

Ak,i0,j0 = [j = j0] f
d1
i (i0).
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w = 1.58

w = 0.30 w = 0.08

Figure 4.5. A tensor product polynomial of bidegree 3 × 4. The coe�cients

are either 0 or 1. Shown are the same envelopes as in Figure 4.4. The envelope

on the top right is considerably larger than the control polygon.

For a k associated with a control point bi,j with 0 < j < d2, i ∈ {0, d1} we set Kk to

Kk,i0,j0 = fd1i (i0).

It is easily checked that now DcmbK = I. The antidi�erence basis D induced by Dcmb is not

directionally convex, though, and we need to employ the subdivide{and{bound procedure

from Section 3.7.1 on page 27 to compute estimates bKc and dKe of (E − L)K that produce

usable envelopes. The initial estimates required for the subdivide{and{bound procedure can

be easily computed from the smallest and largest control point of each Kk. Figures 4.3, 4.4

and 4.5 show examples of envelopes based on Dcmb at the bottom right.

4.1.3. Comparing envelopes. Having two di�erent ways to compute envelopes for ten-

sor product polynomials, one based on Dcnv and one based on Duni, raises of course the

question which of the envelopes is \better" for a suitable de�nition of \better" and whether

using one or the other di�erence operator can be guaranteed to always yield better envelopes.

The most important feature of envelopes is that they enclose a function b, and therefore

specify its location. The smaller the width of an envelope at each (u, v), the better we know

the location of b. It is therefore reasonable to call one envelope of a function b better than
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another envelope of b if the maximal width of the �rst envelope is smaller than the maximal

width of the second.

In general, envelopes based on di�erent di�erence operators D and ∆ are incomparable

with respect to the above criterion, i.e., there will always be two polynomials p and q so

that the envelope of p based on D is smaller than the one based on ∆ while the envelope of

q based on D is larger than its envelope based on ∆.

4.1.4. Tensor product B-splines. Piecewise bilinear envelopes for tensor product B{

splines can be constructed in complete analogy to the construction for tensor product Bern-

stein polynomials.

The di�erence operators need to take the non{equidistant spacing of the Greville abscissae

into account in a fashion similar to the univariate case described in Section 3.2.

For �nite knot sequences, operators similar to Dcnv and Duni can be constructed. If the

knot sequences are in�nite though, the analog of Dcnv consists only of operators using the

3× 3 tensor product mask shown in Figure 4.2, bottom right. As was pointed out by Ulrich

Reif [24], these operators annihilate not only bivariate functions and can therefore not be

used to derive a bound on the di�erence between a tensor product B-spline and its control

polygon.

The estimates bKc and dKe have to be obtained by the subdivide{and{bound procedure

from Section 3.7.1 on page 27. There are two possible strategies one can follow: to get the

best possible estimates, the control nets of the K need to be subdivided as �nely as possible.

The computation of bKc and dKe can take considerable time, though. It is also possible to

leverage (existing) estimates for tensor product Bernstein polynomials of the same bidegree as

the B-spline basis in question by converting the K into tensor product Bernstein polynomials,

one for each mesh cell of the B-spline control polygon.

4.2. Bivariate Bernstein polynomials

The bivariate Bernstein polynomials Bdi are the
(
d+2
2

)
summands of the multinomial equa-

tion

1 = (u0 + u1 + u2)
d =
∑
|i|=d

(
d

i

)
ui =

∑
|i|=d

(
d

i0

)(
d− i0

i1

)
u0
i0u1

i1u2
i2 ,

where u = (u0, u1, u2) with u0+u1+u2 = 1, i = (i0, i1, i2) ∈ N30, and |i| = i0+ i1+ i2. Their

properties, similar to the univariate Bernstein polynomials, include the convex hull property

and a recursion that serves as the basis for deCasteljau's algorithm and their subdividability.

See [11, 5] for an in{depth introduction to bivariate Bernstein polynomials.

The bivariate Bernstein form of a bivariate polynomial b of degree d is

b(u) =
∑
|i|=d

biB
d
i .

The bi are called the Bernstein control points of b. The bivariate Bernstein polynomials are

a basis of the space B of all bivariate polynomials of total degree d. Usually, one considers
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Figure 4.6. Some bivariate Bernstein polynomials of degree 4 and their con-

trol polygons. The remaining basis functions follow from symmetry.

(4, 0, 0) (3, 1, 0)

(3, 0, 1)

(2, 2, 0)

(2, 1, 1)

(2, 0, 2)

(1, 3, 0)

(1, 2, 1)

(1, 1, 2)

(1, 0, 3)

(0, 4, 0)

(0, 3, 1)

(0, 2, 2)

(0, 1, 3)

(0, 0, 4)

Figure 4.7. The control net of a cubic B�ezier triangle with the multiindices

of the control points.

these polynomials only over the triangular domain

U = { (u0, u1) : u0, u1 ≥ 0 and u0 + u1 ≤ 1 } .
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The Bernstein control polygon of b is the piecewise linear interpolant Lb of the control

points bi at the Greville abscissae t
∗
i ,

t∗i = (i0/d, i1/d) ∈ U, i0 + i1 + i2 = d.

A basis for the space H of control polygons is formed by the piecewise linear hat functions

Hi with Hi(j) = [i = j].

The space H∩B is the space of bivariate linear functions, which has dimension 3, so that

rank(E−L) = n−3 where n =
(
d+2
2

)
is the dimension of B. In analogy to the tensor product

case, we associate one di�erence operator with each control point except for the corner control

points, the ones with indices (d, 0, 0), (0, d, 0), and (0, 0, d). For the remaining, non{corner,

control points, let τ map their indices bijectively into {0, . . . , n− 4}.

The space of di�erence operators that annihilate linear functions is spanned by the 3
(
n
2

)
linearly dependent mixed di�erences Dmix

k . Each Dmix
k corresponds to one interior edge of the

control polygon and involves only the two control points on that edge and the two control

points directly across the edge as shown in Figure 4.8. The operators Dmix measure the

\kink" between triangles in the control mesh. A bivariate Bernstein polynomial b is convex

if Dmixb ≥ 0, i.e., if the control mesh curls upwards across each interior edge. Reif [ 25]

computes H�older bounds based on these operators.

4.2.1. A directionally convex basis K. The operators Dcnv shown in Figure 4.9 yield a

directionally convex antidi�erence basis K. Experimentation with a computer algebra system

shows that these operators have the smallest support possible.

The control nets of the functions K do not have a simple closed{form representation.

Because of their convexity, the functions K can be estimated from above by their piecewise

linear interpolant and from below by their control net. Similar to the tensor product case, the

1 −1

−1 1

−1

1

1

−1

1

−1

−1

1

Figure 4.8. Some mixed di�erences Dmix. The three operators are the ones

corresponding to the three edges next to the corner control points.
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1 1

−3

−1

1

1

−3 4

4

4

−15

4

−3

4

4

−3

Figure 4.9. The operators Dcnv yielding a convex antidi�erence basis K.

Shown are an operator on the boundary (left) and an operator in the inte-

rior (right) and their corresponding control points (black circles).

resulting bounds are poor and need to be improved by the subdivide{and{bound procedure

from Section 3.7.1 on page 27. The second row of Figure 4.11 shows some functions and their

envelopes based on Dcnv.

4.2.2. Using simple difference operators. We can also compute envelopes using the

operators depicted in Figure 4.10. These operators are particularly simple: boundary oper-

ators are univariate second di�erences along that boundary, while the interior operators are

the \umbrella" or discrete Laplace operators.

The functions K with DlplK = I are not convex and have to be estimated numerically

using the subdivide{and{bound procedure from Section 3.7.1 on page 27. The min{max

criterion applied to the control nets of the functions K yields an initial estimate on the range

of the K for this procedure.

The third row of Figure 4.11 shows some functions and their envelopes based on these

simple di�erences Dlpl.

1

−2

1

1

1

1

−6

1

1

1

Figure 4.10. The operators Dlpl on the boundary (left) and in the interior (right).
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w = 0.75 w = 0.58

w = 0.12 w = 0.29

Figure 4.11. The bivariate Bernstein polynomial −B3(1,1,1) (left column) and

the bivariate Bernstein polynomial B3(3,0,0) + B3(0,3,0) + B3(0,0,3) (right column).

The �rst row shows the function and its control polygon, the second row shows

the function and its envelope based on Dcnv, and the third row shows the

function and its envelope based on Dlpl. The value w gives the maximal width

of the respective envelope.



CHAPTER 5

One–sided constructions

Many industrial applications require the construction of smooth paths that avoid certain

forbidden regions. A typical example is the path of a cutting tool which must stay away

from the surrounding machine to avoid damage to tool and machine. Another is controlling

a robot moving through a maze. A third is graph layout [ 8].

The rich toolkit of computational geometry delivers permissible piecewise linear paths

in these situations (see e.g. the references in Chapter 13 of [ 4]). However, many physical

applications demand a smoother path, for example a path that is tangent continuous or even

has a continuously varying curvature. The (o�set) path of the cutting tool, for example,

must be parametrically curvature{continuous to avoid jumps in the acceleration that would

strain or damage the driver motors.

5.1. The Support and Channel problems

We formulate and give practical algorithms for two basic problems, Support and Channel.

Both problems are stated in terms of spline functions rather than planar parametric curves.

For physically motivated path problems, the functional notion of continuity is more ap-

propriate than the notion of geometric continuity. A parametric problem can be reduced

to a functional problem by independently constructing functions for each coordinate or by

recasting it in polar coordinates if the input polygon is star{shaped.

The term \close" in the following statement of the two basic problems is made precise in

Section 5.2. For both problems, we assume that a knot sequence (ti) is given and that the

desired spline is to be constructed over this knot sequence.

Support: Given a piecewise linear function a (the input polygon ) with vertices (xi, ai)

and x0 < x1 < · · · < xn, construct a spline function b of a given degree and smoothness

that on the interval [x0, xn] stays close to and entirely above or on the input polygon.

Channel: Given two non{intersecting input polygons a < a with vertices (xi, ai) and

(xi, ai), construct a spline function b that stays between a and a.

We write Support[ t ] and Channel[ t ] to indicate over which knot sequences the problems

are to be solved.

The main di�culty in solving Support and Channel is that they are continuous prob-

lems : we have constraints of the form a(t) ≤ b(t) respectively a(t) ≤ b(t) ≤ a(t). We

avoid solving these continuously constrained feasibility problems by recasting Support and

Channel in terms of piecewise linear envelopes. To solve Support it su�ces to �nd a spline

b whose lower envelope b lies above the input polygon. Similarly, we can solve Channel

by �nding a spline whose envelope stays inside the channel formed by a and a. This lets us

49
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Figure 5.1. The Support problem: given an input polygon a (grey) �nd a

spline (black) that stays above but close to a.

solve Support and Channel by linear, respectively quadratic programming depending on

what additional properties we would like to enforce.

5.1.1. Prior work. Approximation theory has long considered the closely related prob-

lems of one{sided approximation and two{sided approximation . Based on Buck's seminal

\Applications of Duality in Approximation Theory" [ 1], DeVore [7] established the close re-

lation of one{sided approximation to quadrature formulas with nonnegative coe�cients and

gives a Remez-type algorithm for determining a (unique) solution. This, however, is based on

the assumptions that the function to be one{sidedly approximated is di�erentiable, and that

approximands form a strong Chebyshev space. Neither assumption holds for the problems of

interest in this chapter. Mangasarian and Schumaker [ 18] formulate necessary and su�cient

conditions for continuously constrained two{sided approximation problems that guarantee

the existence and uniqueness of a solution. Thirty more years have seen a rich body of

literature concerning one{ and two{sided approximation.

The state of the art has been collected in the monograph [ 22] which also o�ers algorithms

in its last chapter. The reader may check however, that the proposed procedures do not fall

into the realm of practical computing in that they rely on a discretization re�nement without

a bound on the size of the subproblems. Termination is not guaranteed other than that a
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Figure 5.2. The Channel problem: given two non{intersecting input poly-

gons a and a (grey), �nd a spline (black) that stays between a and a.

subsequence must exist that converges. To quote the author [ 22], page 181, \Su�ce to say

that convergence is generally very slow, at least in theory".

This chapter does not solve the hard problems of one{sided approximation as formu-

lated by the approximation theorists | we are satis�ed with an e�ciently computable and

tight approximation with a small, quanti�able error, while the approximation theorist looks

to establish optimality and uniqueness. We hope to make this di�erence clear by calling

the problems Support and Channel rather than one{sided approximation and two{sided

approximation.

In \A path router for graph drawing" [ 8], Dobkin, Gansner, Koutso�os and North derive

interpolating piecewise cubic curves in B�ezier form (Catmull-Rom splines) from the shortest

path polyline to trace out a once di�erentiable path around obstacles. After construction, the

path is checked for admissibility (non-intersection with the forbidden region) and recomputed

with more curve pieces where it fails. In contrast, our approach below uses a priori bounds

and supports the full gamut of spline representations.

Opfer and Oberle [21] have addressed a related problem: that of �nding a natural cubic

spline that interpolates given values and stays inside a polygonal channel. They derive

necessary conditions for a solution through a theorem from control theory; based on this

characterization, an iterative, Newton{type algorithm is constructed that inserts additional
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Figure 5.3. A solution to the Support problem. The constructed quadratic

spline (black) lies above the input polygon (dark grey). The lower part of the

envelope (light grey) is not visible since it matches the input polygon exactly.

knots into an initial interpolant and optimizes the location of the additional knots according

to the necessary conditions for the solution. Oberle and Opfer [ 20] extends these results to

natural quintic splines.

5.2. Solving Support and Channel

With the piecewise linear envelope for splines derived in Section 3.2 on page 14, Support

and Channel can be formulated as feasibility problems with linear constraints. Speci�cally,

let a knot sequence t0 ≤ t1 ≤ · · · ≤ tm+d for a spline of degree d with m+1 control points be

given and recall that t∗i =
∑i+d
i+1 ti/d is the abscissa of the i{th control point (see Algorithm 1

below for a default choice). The constraints for Support ensure that the lower envelope

of the spline stays above the input polygon. The constraints for Channel ensure that the

envelope of the spline stays between the input polygons.

5.2.1. Constraints. The lower constraints C on the 2m unknowns bi and wi are

(1) For 1 ≤ i ≤ m− 1 bound the variable wi, which is a placeholder for min {0,Dib}, by

wi ≤ 0
wi ≤ Dib.
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Figure 5.4. A solution to the Support problem. The constructed cubic spline

(black) lies above the input polygon (dark grey). The envelope (light grey)

matches the input polygon in its lower part.

(2) For 0 ≤ k ≤ m ensure that all breakpoints of the lower envelope b of the spline stay

above the lower polygon a,

a(t∗k) ≤ b(t∗k) = bk +
∑
i∈I∗k

vi,kwl.

(3) For each concave corner aj of the input polygon ensure that the corner lies below the

linear envelope,

aj ≤ b(xj).

The constraints C are obtained from C by replacing all inequality signs ≤ by ≥, all
underlines by overlines, and concave corners by convex corners in (3).

5.2.2. Solving Support. Given the at most 3m− 1+n constraints C, the optimization

goal is to keep the control polygon of b as close as possible to a. The resulting cost function

is

m∑
i=0

(bi − a(t∗i ))→ min .(5.2.17)

In this formulation, Support can be solved by a standard solver for linear programs.

Figures 5.3 and 5.4 show two examples of Support and their solutions.
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t∗kxj t∗k+1

bk+1
wk

xj+1

bk

a(xj)

a(xj+1)

b wk+1

Figure 5.5. Variables of the constraint formulation. Input polygon (thick),

lower envelope (dash-dotted) and control polygon (thin).

5.2.3. Solving Channel. There are at most 6m − 2 + n + n constraints C and C, and
we can choose from a variety of optimization goals. To keep b centered between a and a, i.e.

ai − bi = bi − ai for each i, we use the cost function

m∑
i=0

ai − 2bi + ai → min .(5.2.18)

In this formulation, Channel can be solved by a standard solver for linear programs.

To keep b as close as possible to a straight line, for which ∆2bj = 0, we use the cost

function
m−1∑
i=1

(Dib)
2 → min .(5.2.19)

This results in a quadratic program that again can be solved by a standard solver.

5.2.4. Initial knot sequence. The user may choose the initial non-decreasing knot

sequence freely, for example as the abscissae of the corners of a. Algorithm 1 below generates

a short knot sequence (ti) such that the corresponding sequence of Greville abscissae include

the breakpoints xi of the input polygon(s). The idea is to introduce additional knots (and

Greville abscissae) where the input sequence (xi) contains gaps that are large relative to the

surrounding intervals.

5.2.5. Knot insertion. While we are assured of a solution to Support, for example

a straight line above a, Channel may not have a solution for the given requirements of
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(a)

(b)

(c)

(d)

Figure 5.6. Solutions to a Channel problem: the upper input polygon is a

constant o�set of the lower input polygon. The o�set amount is 1 for (a){(c)

and 1/2 for (d). The solution is quadratic for (a) and cubic for (b){(d). For

(a) and (c), the breaks of the control polygon do not coincide with the breaks

of the input polygons, while they do coincide for (b) and (d).
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Figure 5.7. A tangent continuous quadratic (top) and a curvature continuous

cubic (bottom) solution to a Channel problem. The input polygons a and a

(dark grey) enclose the splines envelope (light grey) and hence the spline

(black).

degree, smoothness and break points. This di�culty is overcome by inserting knots where

the channel constraints are violated. Concretely, we augment the knot sequence (ti) with

additional breaks near the breaks of the input polygons where the envelope returned by

the linear or quadratic program violates the Channel conditions. This adaptive strategy is
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Algorithm 1 Compute an interpolating knot sequence (ti) for a B{spline basis of degree d

such that the Greville abscissae contain the sequence x0 < x1 < · · · < xm.
Require: x0 < x1 < · · · < xm and d > 1

t0 = t1 = · · · = td ← x0

k← d

for l← 1 . . .m− 1 do

repeat

tk+1 ← dxl −
∑k
j=k−d+2 tj

if tk+1 > xl+1 then -- New knot too big, add intermediate Greville abscissae

tk+1 ← xl − min{xl+1 − xl, xl − tk}/2

k← k+ 1

until dxl =
∑k
j=k−d+1 tj

tk+1, . . . , tk+d ← xm

Ensure: (tk) interpolating knot sequence

Ensure: For any 0 ≤ i ≤ m exists a k ≥ i with xi =
∑k+d
j=k+1 tj

guaranteed to yield a solution since the envelope of b converges to b under re�nement of the

knot sequence. A rigorous proof of �nite termination inserts knots equidistantly so that the

simple bound for uniform splines, |b− Lb| ≤ (d + 1)/24max |Dib|, applies which contracts

by 1/4 as the knot distance is halved.

Example. Figure 5.7 shows two solutions to a Channel problem. Both were computed

using the quadratic cost function above and the knot sequence generated by Algorithm 1. For

the quadratic spline, the control polygon has only one more break than the input polygon,

while the cubic spline has twice as many control points as there are points in the input

polygon. 4

5.3. Symbolic refinement

The solutions to Support and Channel described in the last section are not the best

possible: the linearization of the problem can causes errors in the approximation that depend

on the distance between the spline and its envelope. The distance, and therefore the approx-

imation error, is reduced by re�ning the input knot sequence (ti) to a �ner knot sequence

(t̂i). At the same time, the number of control points of the solution b̂ over the re�ned knot

sequence (t̂i) increases with the length of (t̂i).

This section describes how the approximation error between the solution b to the lin-

earized problem and the solution b? of a continuously constrained problem over the �xed

knot sequence (ti) can be reduced without increasing the number of control points. This is

achieved by modifying the programs for Support[ t̂ ] or Channel[ t̂ ] with the subdivision

rules that map a spline over the original knot sequence (ti) to the re�ned knot sequence (t̂i).

As a consequence, the solutions to Support[ t̂ ] and Channel[ t̂ ] converge to the solution
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b? of a continuous problem as the knot spacing in (t̂i) converges to zero as explained in

Section 5.4.

5.3.1. Modifying the programs. Let S be the subdivision matrix that maps the control

vector b of a spline over the coarse knot sequence (ti) to the control vector b̂ of the same

spline over the re�ned knot sequence (t̂i),

b̂ = Sb.

The programs for Support[ t̂ ] or Channel[ t̂ ] are expressed in terms of the variables ŷ,

ŷ =

[
b̂

w

]
w =

w for Support[
wT wT

]T
for Channel.

To obtain a program in terms of the control points b of a spline over the coarse knot sequence

(ti), we substitute the variables ŷ by variables y with

ŷ =

[
S 0

0 I

]
y where y =

[
b

w

]
and 0 and I are zero and identity matrices of appropriate sizes. Both y and ŷ contain the

same variables w, which are placeholders for the minimum of the second di�erences of the

re�ned control points b̂ and 0 and depend nonlinearly on the control points b. They can

therefore not be replaced by a linear function of the analogous expressions in the control

points b over the coarse knot sequence.

A linear program to solve Support[ t̂ ] or Channel[ t̂ ] can be written as

cT ŷ→ min subject to A ŷ ≤ f.

for a suitable matrix A and some vector f. After substituting y for ŷ, the new linear program

that yields a spline over (ti) is

cT

[
S 0

0 I

]
y→ min subject to A

[
S 0

0 I

]
y ≤ f.

Quadratic programs can be rewritten analogously.

We refer to the solutions of the modi�ed programs in y as Support[ t | t̂ ] and Channel[ t | t̂ ].

The solutions are splines over the knot sequence (ti) which are optimal with respect to the

linearized constraints over the re�ned knot sequence (t̂i). In the limit, as the modi�ed prob-

lems are solved for �ner and �ner knot sequences (t̂i), the solutions b of one of these problems

converge to the solution b? of the continuously constrained problem.

5.4. Constrained approximation

The algorithms explained in the last section can be used to approximate solutions to

continuously constrained approximation problems under certain conditions. Speci�cally, let

A be a function space for which we have piecewise linear envelopes, for example the space

of cubic interpolatory subdivision functions introduced in Section 3.7, and for which we can
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re�ne the envelopes a and a of a function a ∈ A so that for any ε > 0 there is a subdivided

representation a ′ of a such that the envelopes a ′ and a ′ of a ′ lie within ε, a ′ − a ′ ≤ ε.
We can now use Support[ t | t̂ ] to approximate solutions to the one{sided L1 approxima-

tion problem ∫ tm+d

t0

b(t) − a(t) dt→ min subject to b ≥ a(5.4.20)

where b ranges over all splines of degree d over the knot sequence (ti). The idea is very

simple: for the �xed function a ∈ A, compute a suitably re�ned upper envelope a ′ and solve

Support[ t | (ti) ] for a re�nement (t̂i) of the knot sequence (ti) with the cost function∫ tm+d

t0

b(t) dt =

m∑
i=0

ti+d+1 − ti

d+ 1
bi dt→ min .

For a solution b to this problem let b̂ be the upper envelope of b̂, the re�nement of the

control polygon of b over the knot sequence (t̂i). The approximation error between b and a

is bounded by the di�erence b̂−a ′ of the upper envelope b̂ and the lower envelope a ′ of the

re�nement a ′ of a.

The approximation error can be further reduced by repeating the above process for ever

�ner knot sequences (t̂i) and ever �ner re�nements a ′ of a. Since both envelopes converge to

the respective functions under repeated re�nement, the solutions of the Support problems

converge to the solution b? of the continuously constrained problem (5.4.20).

We can use Channel in a similar fashion to construct functions b that lie between two

non{intersecting input functions a1, a2 ∈ A with a1 < a2, for example the two{sided problem

of �nding a spline b of degree d over the knot sequence (ti) with∫ tm+d

t0

(b ′′(t))2 dt→ min subject to a1 ≤ b ≤ a2.(5.4.21)

The cost function for this problem is quadratic and can be written as bTQb→ min where Q

is the positive de�nite symmetric matrix with entries

Qi,j =

∫ tm+d

t0

Nd−2
i (t)Nd−2

j (t) dt 0 ≤ i, j ≤ d− 2.

The solutions to this continuously constrained approximation problem can again be approx-

imated by solving Channel[ t | t̂ ] for re�nements (t̂i) of (ti) and with the upper envelope a ′1
of a re�nement a ′1 of a1 and the lower envelope a ′2 of a re�nement of a2 as input polygons.

This requires solving the linearly constrained problem

bTQb→ min subject to a ′1 ≤ b , b ≤ a
′
2(5.4.22)

where b ≤ b ≤ b are the re�ned envelopes of b.

Again, the solutions b of the linearized problem (5.4.22) converge to the solution b? of

the continuously constrained problem (5.4.21) as the knot sequence (t̂i) and the re�nements

a ′1 and a
′
2 of a1 and a2 are progressively re�ned because of the convergence of the piecewise

linear envelopes to the functions they envelop.
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CHAPTER 6

Conclusions

We have described a new approach to constructing envelopes of nonlinear geometry. The

approach is used to construct piecewise linear envelopes for many practically important bases

such as univariate B-splines and tensor product polynomials. These envelopes serve, although

useful in their own right, as examples that demonstrate the versatility of our approach. Our

approach yields envelopes that are, in general, tighter than previously known envelopes.

The general framework laid out in Chapter 2 is very useful in generating envelopes of

nonlinear geometry that are e�ciently computable in practice. The main computational

burden is shifted to a precomputation phase that need only be carried out once for each

basis used to represent nonlinear geometry.

The construction is very general in that it assumes little about the basis in which the non-

linear geometry is represented. In particular, the construction assumes neither that the basis

ful�lls the convex hull property nor that it is of a given smoothness class. The construction

also requires only a loose coupling between a geometry object b and its simpli�cation Lb and

does not require, for example, that the simpli�cation Lb interpolates b. The simpli�cation

operator L can therefore be chosen based on computational convenience, for example as a

simpler object that is already used to represent b such as its control polygon.

We have shown in Section 3.7 on page 26 that the re�nability of a basis can be exploited

to compute tight estimates on an antidi�erence basis even in the absence of a convex hull

property or an evaluation algorithm. We showed in Section 3.7.2 that Lb does not need to

be a linearization of b, but can be of higher order, such as the piecewise cubic envelopes

we computed for cubic interpolatory subdivision. This can be used, for example, to convert

one function b given in one basis to two functions b and b in another basis that enclose

b and gives a simple algoithm for basis conversions in a CAD system based on interval

arithmetic: the interval associated with the conversion Lb of b evaluated at t is [b(t), b(t)].

Using higher{order envelopes instead of piecewise linear ones has the advantage that Lb will

still be smooth.

An important feature of the piecewise linear and bilinear envelopes constructed in Chap-

ters 3 and 4 is that they have the same structure as the underlying control polygons. This

eases the construction of piecewise linear or bilinear envelopes for parametric curves or sur-

faces considerably. For adaptive subdivision of a curve or surface, it is enough to apply the

bounds at the control points, enclosing them in axis aligned boxes, and basing the decision

whether further subdivision is needed solely on the sizes of these boxes. This is considerably

simpler than constructing local convex hulls.
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The structural simplicity of the envelopes makes it possible to solve inverse problems as

described in Chapter 5. The linear programs used to approximate continuously constrained

optimization problems are sparse with a small bandwidth. Because of the similarity between

the envelopes for bivariate functions and those for univariate functions, the constructions

from Chapter 5 are easily extended to bivariate functions and can be used, for example, for

the one{sided smoothing of bivariate piecewise linear functions such as height �elds.

One important area of further investigation is that of computing tight enclosures bKc
and dKe of the antidi�erence bases K, in particular for bivariate functions such as tensor

product polynomials and bivariate Bernstein polynomials. The cost of the precomputation

phase could be reduced greatly if a more direct algorithm for computing bKc and dKe than
the subdivide{and{bound procedure were available.

A second area of further investigation are generalized subdivision surfaces, a represen-

tation of nonlinear geometry that has become very popular in recent years. Most of these

representations lack envelopes and therefore satisfactory intersection algorithms.
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